Chromatic subdivision of a simplicial complex

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariance of the barycentric subdivision of a simplicial complex

‎In this paper we prove that a simplicial complex is determined‎ ‎uniquely up to isomorphism by its barycentric subdivision as well as‎ ‎its comparability graph‎. ‎We also put together several algebraic‎, ‎combinatorial and topological invariants of simplicial complexes‎.

متن کامل

invariance of the barycentric subdivision of a simplicial complex

‎in this paper we prove that a simplicial complex is determined‎ ‎uniquely up to isomorphism by its barycentric subdivision as well as‎ ‎its comparability graph‎. ‎we also put together several algebraic‎, ‎combinatorial and topological invariants of simplicial complexes‎.

متن کامل

Chromatic Polynomials of Simplicial Complexes

In this note we consider s-chromatic polynomials for finite simplicial complexes. When s = 1, the 1-chromatic polynomial is just the usual graph chromatic polynomial of the 1-skeleton. In general, the s-chromatic polynomial depends on the s-skeleton and its value at r is the number of (r, s)-colorings of the simplicial complex.

متن کامل

Lecture 5: Simplicial Complex 2-Manifolds, Simplex and Simplicial Complex

Figure 1: Two greatly different curves have a small Hausdroff distance Fréchet distance is a good similarity measurement for curves in Euclidean space. It can be simply described by a daily example. Suppose a dog and its owner are walking along two different paths (curves), connected by a leash. Both of them are moving continuously and forwards only, at any speed or even stop. Then length of th...

متن کامل

Complexes 6 Simplicial complex

Definition 20 (simplex). A k-simplex σ is the convex hull of a set P of k + 1 affinely independent points. In particular, a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. A k-simplex is said to have dimension k. A face of σ is a simplex that is the convex hull of a nonempty subset of P. Faces of σ come in all dimensions from zero (σ’s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Homology, Homotopy and Applications

سال: 2012

ISSN: 1532-0073,1532-0081

DOI: 10.4310/hha.2012.v14.n2.a12